MakeItFrom.com
Menu (ESC)

S32003 Stainless Steel vs. C90900 Bronze

S32003 stainless steel belongs to the iron alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32003 stainless steel and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
15
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 730
280
Tensile Strength: Yield (Proof), MPa 510
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 15
65
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 14
36
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.0
3.9
Embodied Energy, MJ/kg 42
64
Embodied Water, L/kg 150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
35
Resilience: Unit (Modulus of Resilience), kJ/m3 660
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26
8.8
Strength to Weight: Bending, points 23
11
Thermal Diffusivity, mm2/s 4.0
21
Thermal Shock Resistance, points 21
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 22.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 68.2 to 75.9
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 3.0 to 4.0
0 to 0.5
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6