MakeItFrom.com
Menu (ESC)

S32003 Stainless Steel vs. C93700 Bronze

S32003 stainless steel belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S32003 stainless steel and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 28
20
Fatigue Strength, MPa 370
90
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 79
37
Tensile Strength: Ultimate (UTS), MPa 730
240
Tensile Strength: Yield (Proof), MPa 510
130

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1010
140
Melting Completion (Liquidus), °C 1440
930
Melting Onset (Solidus), °C 1400
760
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 14
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 42
57
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
40
Resilience: Unit (Modulus of Resilience), kJ/m3 660
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 26
7.5
Strength to Weight: Bending, points 23
9.6
Thermal Diffusivity, mm2/s 4.0
15
Thermal Shock Resistance, points 21
9.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 22.5
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 68.2 to 75.9
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 3.0 to 4.0
0 to 1.0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0