MakeItFrom.com
Menu (ESC)

S32003 Stainless Steel vs. S82031 Stainless Steel

Both S32003 stainless steel and S82031 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32003 stainless steel and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
39
Fatigue Strength, MPa 370
490
Poisson's Ratio 0.27
0.28
Rockwell C Hardness 27
27
Shear Modulus, GPa 79
78
Shear Strength, MPa 480
540
Tensile Strength: Ultimate (UTS), MPa 730
780
Tensile Strength: Yield (Proof), MPa 510
570

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 430
430
Maximum Temperature: Mechanical, °C 1010
980
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 14
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 29
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
280
Resilience: Unit (Modulus of Resilience), kJ/m3 660
820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
28
Strength to Weight: Bending, points 23
24
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 21
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 19.5 to 22.5
19 to 22
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 68.2 to 75.9
68 to 78.3
Manganese (Mn), % 0 to 2.0
0 to 2.5
Molybdenum (Mo), % 1.5 to 2.0
0.6 to 1.4
Nickel (Ni), % 3.0 to 4.0
2.0 to 4.0
Nitrogen (N), % 0.14 to 0.2
0.14 to 0.24
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.0050