MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. EN 1.4000 Stainless Steel

Both S32050 stainless steel and EN 1.4000 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 61% of their average alloy composition in common.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is EN 1.4000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
180
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
22
Fatigue Strength, MPa 340
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 540
320
Tensile Strength: Ultimate (UTS), MPa 770
500
Tensile Strength: Yield (Proof), MPa 370
260

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 1100
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 6.0
1.9
Embodied Energy, MJ/kg 81
27
Embodied Water, L/kg 210
100

Common Calculations

PREN (Pitting Resistance) 48
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
91
Resilience: Unit (Modulus of Resilience), kJ/m3 330
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 3.3
8.1
Thermal Shock Resistance, points 17
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 24
12 to 14
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 43.1 to 51.8
83.9 to 88
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 6.0 to 6.6
0
Nickel (Ni), % 20 to 23
0
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015