MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. EN 1.4021 Stainless Steel

Both S32050 stainless steel and EN 1.4021 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
11 to 17
Fatigue Strength, MPa 340
240 to 380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 540
390 to 530
Tensile Strength: Ultimate (UTS), MPa 770
630 to 880
Tensile Strength: Yield (Proof), MPa 370
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 1100
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 6.0
1.9
Embodied Energy, MJ/kg 81
27
Embodied Water, L/kg 210
100

Common Calculations

PREN (Pitting Resistance) 48
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 330
400 to 1160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
23 to 31
Strength to Weight: Bending, points 23
21 to 26
Thermal Diffusivity, mm2/s 3.3
8.1
Thermal Shock Resistance, points 17
22 to 31

Alloy Composition

Carbon (C), % 0 to 0.030
0.16 to 0.25
Chromium (Cr), % 22 to 24
12 to 14
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 43.1 to 51.8
83.2 to 87.8
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 6.0 to 6.6
0
Nickel (Ni), % 20 to 23
0
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015