MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. EN 1.4369 Stainless Steel

Both S32050 stainless steel and EN 1.4369 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is EN 1.4369 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
260
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
40
Fatigue Strength, MPa 340
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 540
580
Tensile Strength: Ultimate (UTS), MPa 770
850
Tensile Strength: Yield (Proof), MPa 370
390

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
420
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 6.0
3.0
Embodied Energy, MJ/kg 81
43
Embodied Water, L/kg 210
150

Common Calculations

PREN (Pitting Resistance) 48
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
280
Resilience: Unit (Modulus of Resilience), kJ/m3 330
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
31
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 3.3
4.0
Thermal Shock Resistance, points 17
18

Alloy Composition

Carbon (C), % 0 to 0.030
0.070 to 0.15
Chromium (Cr), % 22 to 24
17.5 to 19.5
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 43.1 to 51.8
63 to 70.2
Manganese (Mn), % 0 to 1.5
5.0 to 7.5
Molybdenum (Mo), % 6.0 to 6.6
0
Nickel (Ni), % 20 to 23
6.5 to 8.5
Nitrogen (N), % 0.21 to 0.32
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 1.0
0.5 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015