MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. Grade 37 Titanium

S32050 stainless steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 46
22
Fatigue Strength, MPa 340
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
40
Shear Strength, MPa 540
240
Tensile Strength: Ultimate (UTS), MPa 770
390
Tensile Strength: Yield (Proof), MPa 370
250

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1460
1650
Melting Onset (Solidus), °C 1410
1600
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 16
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 6.0
31
Embodied Energy, MJ/kg 81
500
Embodied Water, L/kg 210
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
76
Resilience: Unit (Modulus of Resilience), kJ/m3 330
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 3.3
8.4
Thermal Shock Resistance, points 17
29

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0 to 0.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 43.1 to 51.8
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 6.0 to 6.6
0
Nickel (Ni), % 20 to 23
0
Nitrogen (N), % 0.21 to 0.32
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
96.9 to 99
Residuals, % 0
0 to 0.4