MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. SAE-AISI 8645 Steel

Both S32050 stainless steel and SAE-AISI 8645 steel are iron alloys. They have 50% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is SAE-AISI 8645 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
12 to 23
Fatigue Strength, MPa 340
280 to 350
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 540
380 to 400
Tensile Strength: Ultimate (UTS), MPa 770
600 to 670
Tensile Strength: Yield (Proof), MPa 370
390 to 560

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.6
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.5
Embodied Energy, MJ/kg 81
20
Embodied Water, L/kg 210
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 330
420 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
21 to 24
Strength to Weight: Bending, points 23
20 to 22
Thermal Diffusivity, mm2/s 3.3
10
Thermal Shock Resistance, points 17
18 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0.43 to 0.48
Chromium (Cr), % 22 to 24
0.4 to 0.6
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 43.1 to 51.8
96.5 to 97.7
Manganese (Mn), % 0 to 1.5
0.75 to 1.0
Molybdenum (Mo), % 6.0 to 6.6
0.15 to 0.25
Nickel (Ni), % 20 to 23
0.4 to 0.7
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.040