MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. C15000 Copper

S32050 stainless steel belongs to the iron alloys classification, while C15000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is C15000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 46
13 to 54
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 540
150 to 280
Tensile Strength: Ultimate (UTS), MPa 770
200 to 460
Tensile Strength: Yield (Proof), MPa 370
45 to 460

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
980
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
370
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
93
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
93

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.0
9.0
Embodied Carbon, kg CO2/kg material 6.0
2.7
Embodied Energy, MJ/kg 81
43
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
19 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 330
8.7 to 910
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27
6.2 to 14
Strength to Weight: Bending, points 23
8.5 to 15
Thermal Diffusivity, mm2/s 3.3
110
Thermal Shock Resistance, points 17
7.3 to 17

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0 to 0.4
99.8 to 99.9
Iron (Fe), % 43.1 to 51.8
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 6.0 to 6.6
0
Nickel (Ni), % 20 to 23
0
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Zirconium (Zr), % 0
0.1 to 0.2