MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. AISI 321 Stainless Steel

Both S32053 stainless steel and AISI 321 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is AISI 321 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
34 to 50
Fatigue Strength, MPa 310
220 to 270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 510
420 to 460
Tensile Strength: Ultimate (UTS), MPa 730
590 to 690
Tensile Strength: Yield (Proof), MPa 330
220 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
480
Maximum Temperature: Mechanical, °C 1100
870
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
16
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
16
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.1
3.2
Embodied Energy, MJ/kg 83
45
Embodied Water, L/kg 210
140

Common Calculations

PREN (Pitting Resistance) 44
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
190 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 270
130 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
21 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 3.3
4.1
Thermal Shock Resistance, points 16
13 to 15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 24
17 to 19
Iron (Fe), % 41.7 to 48.8
65.3 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
9.0 to 12
Nitrogen (N), % 0.17 to 0.22
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0 to 0.7