MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. AWS E316L

Both S32053 stainless steel and AWS E316L are iron alloys. They have 80% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
78
Tensile Strength: Ultimate (UTS), MPa 730
550

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.1
4.0
Embodied Energy, MJ/kg 83
55
Embodied Water, L/kg 210
160

Common Calculations

PREN (Pitting Resistance) 44
27
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 3.3
4.0
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 22 to 24
17 to 20
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 41.7 to 48.8
58.6 to 69.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 5.0 to 6.0
2.0 to 3.0
Nickel (Ni), % 24 to 26
11 to 14
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030