MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. EN 1.4107 Stainless Steel

Both S32053 stainless steel and EN 1.4107 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
18 to 21
Fatigue Strength, MPa 310
260 to 350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
76
Tensile Strength: Ultimate (UTS), MPa 730
620 to 700
Tensile Strength: Yield (Proof), MPa 330
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 1100
740
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
27
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.1
2.1
Embodied Energy, MJ/kg 83
30
Embodied Water, L/kg 210
100

Common Calculations

PREN (Pitting Resistance) 44
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 270
420 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
22 to 25
Strength to Weight: Bending, points 22
21 to 22
Thermal Diffusivity, mm2/s 3.3
7.2
Thermal Shock Resistance, points 16
22 to 25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 22 to 24
11.5 to 12.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 41.7 to 48.8
83.8 to 87.2
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0 to 0.5
Nickel (Ni), % 24 to 26
0.8 to 1.5
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.020
Vanadium (V), % 0
0 to 0.080