MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. EN 1.4911 Stainless Steel

Both S32053 stainless steel and EN 1.4911 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
11
Fatigue Strength, MPa 310
530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 510
640
Tensile Strength: Ultimate (UTS), MPa 730
1070
Tensile Strength: Yield (Proof), MPa 330
970

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
430
Maximum Temperature: Mechanical, °C 1100
700
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
20
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.1
3.4
Embodied Energy, MJ/kg 83
49
Embodied Water, L/kg 210
130

Common Calculations

PREN (Pitting Resistance) 44
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
120
Resilience: Unit (Modulus of Resilience), kJ/m3 270
2410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
38
Strength to Weight: Bending, points 22
30
Thermal Diffusivity, mm2/s 3.3
5.4
Thermal Shock Resistance, points 16
37

Alloy Composition

Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0 to 0.030
0.050 to 0.12
Chromium (Cr), % 22 to 24
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Iron (Fe), % 41.7 to 48.8
75.7 to 83.8
Manganese (Mn), % 0 to 1.0
0.3 to 1.3
Molybdenum (Mo), % 5.0 to 6.0
0.5 to 1.0
Nickel (Ni), % 24 to 26
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0.17 to 0.22
0 to 0.035
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 1.0
0.1 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.015
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4