MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. C50100 Bronze

S32053 stainless steel belongs to the iron alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 46
40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 510
180
Tensile Strength: Ultimate (UTS), MPa 730
270
Tensile Strength: Yield (Proof), MPa 330
82

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1070
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
230
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
55

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.1
2.6
Embodied Energy, MJ/kg 83
42
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
82
Resilience: Unit (Modulus of Resilience), kJ/m3 270
29
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
8.3
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 3.3
66
Thermal Shock Resistance, points 16
9.5

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
98.6 to 99.49
Iron (Fe), % 41.7 to 48.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 0.8
Residuals, % 0
0 to 0.5