MakeItFrom.com
Menu (ESC)

S32101 Stainless Steel vs. 5051A Aluminum

S32101 stainless steel belongs to the iron alloys classification, while 5051A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32101 stainless steel and the bottom bar is 5051A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
18 to 21
Fatigue Strength, MPa 400
51 to 61
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 490
110
Tensile Strength: Ultimate (UTS), MPa 740
170
Tensile Strength: Yield (Proof), MPa 500
56

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 38
150
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
24 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 640
23
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 27
17 to 18
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 4.0
63
Thermal Shock Resistance, points 20
7.6

Alloy Composition

Aluminum (Al), % 0
96.1 to 98.6
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 21 to 22
0 to 0.3
Copper (Cu), % 0.1 to 0.8
0 to 0.050
Iron (Fe), % 67.3 to 73.3
0 to 0.45
Magnesium (Mg), % 0
1.4 to 2.1
Manganese (Mn), % 4.0 to 6.0
0 to 0.25
Molybdenum (Mo), % 0.1 to 0.8
0
Nickel (Ni), % 1.4 to 1.7
0
Nitrogen (N), % 0.2 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15