MakeItFrom.com
Menu (ESC)

S32205 Stainless Steel vs. Grade Ti-Pd8A Titanium

S32205 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32205 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
13
Fatigue Strength, MPa 370
260
Poisson's Ratio 0.27
0.32
Rockwell C Hardness 27
21
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 740
500
Tensile Strength: Yield (Proof), MPa 510
430

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1070
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.7
49
Embodied Energy, MJ/kg 50
840
Embodied Water, L/kg 160
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
65
Resilience: Unit (Modulus of Resilience), kJ/m3 630
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26
31
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 4.0
8.6
Thermal Shock Resistance, points 20
39

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 22 to 23
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.7 to 70.4
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0 to 0.050
Nitrogen (N), % 0.14 to 0.2
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4