MakeItFrom.com
Menu (ESC)

S32205 Stainless Steel vs. C82700 Copper

S32205 stainless steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32205 stainless steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
1.8
Poisson's Ratio 0.27
0.33
Rockwell C Hardness 27
39
Shear Modulus, GPa 80
46
Tensile Strength: Ultimate (UTS), MPa 740
1200
Tensile Strength: Yield (Proof), MPa 510
1020

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1070
300
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.7
12
Embodied Energy, MJ/kg 50
180
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
21
Resilience: Unit (Modulus of Resilience), kJ/m3 630
4260
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26
38
Strength to Weight: Bending, points 23
29
Thermal Diffusivity, mm2/s 4.0
39
Thermal Shock Resistance, points 20
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 23
0 to 0.090
Copper (Cu), % 0
94.6 to 96.7
Iron (Fe), % 63.7 to 70.4
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
1.0 to 1.5
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5