MakeItFrom.com
Menu (ESC)

S32205 Stainless Steel vs. S35140 Stainless Steel

Both S32205 stainless steel and S35140 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32205 stainless steel and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 370
250
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
78
Shear Strength, MPa 480
460
Tensile Strength: Ultimate (UTS), MPa 740
690
Tensile Strength: Yield (Proof), MPa 510
310

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 440
500
Maximum Temperature: Mechanical, °C 1070
1100
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.7
5.5
Embodied Energy, MJ/kg 50
78
Embodied Water, L/kg 160
190

Common Calculations

PREN (Pitting Resistance) 36
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
190
Resilience: Unit (Modulus of Resilience), kJ/m3 630
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
3.7
Thermal Shock Resistance, points 20
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 22 to 23
20 to 22
Iron (Fe), % 63.7 to 70.4
44.1 to 52.7
Manganese (Mn), % 0 to 2.0
1.0 to 3.0
Molybdenum (Mo), % 3.0 to 3.5
1.0 to 2.0
Nickel (Ni), % 4.5 to 6.5
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0.14 to 0.2
0.080 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030