MakeItFrom.com
Menu (ESC)

S32205 Stainless Steel vs. S82122 Stainless Steel

Both S32205 stainless steel and S82122 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32205 stainless steel and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 370
360
Poisson's Ratio 0.27
0.28
Rockwell C Hardness 27
28
Shear Modulus, GPa 80
78
Shear Strength, MPa 480
460
Tensile Strength: Ultimate (UTS), MPa 740
680
Tensile Strength: Yield (Proof), MPa 510
450

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 440
430
Maximum Temperature: Mechanical, °C 1070
990
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.6
Embodied Energy, MJ/kg 50
37
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 36
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
210
Resilience: Unit (Modulus of Resilience), kJ/m3 630
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 20
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 22 to 23
20.5 to 21.5
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 63.7 to 70.4
68.9 to 75.4
Manganese (Mn), % 0 to 2.0
2.0 to 4.0
Molybdenum (Mo), % 3.0 to 3.5
0 to 0.6
Nickel (Ni), % 4.5 to 6.5
1.5 to 2.5
Nitrogen (N), % 0.14 to 0.2
0.15 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.020