MakeItFrom.com
Menu (ESC)

S32304 Stainless Steel vs. AISI 310S Stainless Steel

Both S32304 stainless steel and AISI 310S stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32304 stainless steel and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34 to 44
Fatigue Strength, MPa 330
250 to 280
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
79
Shear Strength, MPa 440
420 to 470
Tensile Strength: Ultimate (UTS), MPa 670
600 to 710
Tensile Strength: Yield (Proof), MPa 460
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1050
1100
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
25
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 40
61
Embodied Water, L/kg 160
190

Common Calculations

PREN (Pitting Resistance) 26
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 520
190 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
21 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 4.0
4.1
Thermal Shock Resistance, points 18
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 21.5 to 24.5
24 to 26
Copper (Cu), % 0.050 to 0.6
0
Iron (Fe), % 65 to 75.4
48.3 to 57
Manganese (Mn), % 0 to 2.5
0 to 2.0
Molybdenum (Mo), % 0.050 to 0.6
0
Nickel (Ni), % 3.0 to 5.5
19 to 22
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030