MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both S32506 stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
75
Shear Strength, MPa 440
420
Tensile Strength: Ultimate (UTS), MPa 710
670
Tensile Strength: Yield (Proof), MPa 500
470

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 20
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 54
37
Embodied Water, L/kg 180
88

Common Calculations

PREN (Pitting Resistance) 38
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.3
6.9
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.030
0.080 to 0.12
Chromium (Cr), % 24 to 26
8.0 to 9.5
Iron (Fe), % 60.8 to 67.4
87.3 to 90.3
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 3.0 to 3.5
0.85 to 1.1
Nickel (Ni), % 5.5 to 7.2
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0.080 to 0.2
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.9
0.2 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0.050 to 0.3
0
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010