MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. C443.0 Aluminum

S32506 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
65
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 21
9.0
Fatigue Strength, MPa 330
120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 440
130
Tensile Strength: Ultimate (UTS), MPa 710
230
Tensile Strength: Yield (Proof), MPa 500
100

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.9
7.9
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
17
Resilience: Unit (Modulus of Resilience), kJ/m3 620
70
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 4.3
58
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 60.8 to 67.4
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 5.5 to 7.2
0 to 0.5
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 0.050 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25