MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. EN 1.8898 Steel

Both S32506 stainless steel and EN 1.8898 steel are iron alloys. They have 65% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
18
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 440
370
Tensile Strength: Ultimate (UTS), MPa 710
600
Tensile Strength: Yield (Proof), MPa 500
490

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.6
Embodied Energy, MJ/kg 54
22
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 620
650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 24 to 26
0
Iron (Fe), % 60.8 to 67.4
96.7 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 3.0 to 3.5
0 to 0.2
Nickel (Ni), % 5.5 to 7.2
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.080 to 0.2
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.9
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 0.050 to 0.3
0
Vanadium (V), % 0
0 to 0.12