MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. C67300 Bronze

S32506 stainless steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
12
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 81
41
Shear Strength, MPa 440
300
Tensile Strength: Ultimate (UTS), MPa 710
500
Tensile Strength: Yield (Proof), MPa 500
340

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1450
870
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
95
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 54
46
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
55
Resilience: Unit (Modulus of Resilience), kJ/m3 620
550
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.3
30
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 60.8 to 67.4
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 1.0
2.0 to 3.5
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 5.5 to 7.2
0 to 0.25
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Tungsten (W), % 0.050 to 0.3
0
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5