MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. C83400 Brass

S32506 stainless steel belongs to the iron alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
30
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
42
Tensile Strength: Ultimate (UTS), MPa 710
240
Tensile Strength: Yield (Proof), MPa 500
69

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
190
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
46

Otherwise Unclassified Properties

Base Metal Price, % relative 20
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 54
43
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
55
Resilience: Unit (Modulus of Resilience), kJ/m3 620
21
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
7.7
Strength to Weight: Bending, points 23
9.9
Thermal Diffusivity, mm2/s 4.3
57
Thermal Shock Resistance, points 19
8.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
88 to 92
Iron (Fe), % 60.8 to 67.4
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 5.5 to 7.2
0 to 1.0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 0.050 to 0.3
0
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7