MakeItFrom.com
Menu (ESC)

S32520 Stainless Steel vs. 359.0 Aluminum

S32520 stainless steel belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32520 stainless steel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
3.8 to 4.9
Fatigue Strength, MPa 460
100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 560
220 to 230
Tensile Strength: Ultimate (UTS), MPa 860
340 to 350
Tensile Strength: Yield (Proof), MPa 630
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
530
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.0
8.0
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 180
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 960
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 31
37 to 38
Strength to Weight: Bending, points 26
42 to 43
Thermal Diffusivity, mm2/s 4.1
59
Thermal Shock Resistance, points 24
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 2.0
0 to 0.2
Iron (Fe), % 57.3 to 66.8
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 5.5 to 8.0
0
Nitrogen (N), % 0.2 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
8.5 to 9.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15