MakeItFrom.com
Menu (ESC)

S32520 Stainless Steel vs. 520.0 Aluminum

S32520 stainless steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32520 stainless steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
75
Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 28
14
Fatigue Strength, MPa 460
55
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 560
230
Tensile Strength: Ultimate (UTS), MPa 860
330
Tensile Strength: Yield (Proof), MPa 630
170

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1400
480
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
87
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
21
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
72

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.0
9.8
Embodied Energy, MJ/kg 55
160
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
39
Resilience: Unit (Modulus of Resilience), kJ/m3 960
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 31
35
Strength to Weight: Bending, points 26
41
Thermal Diffusivity, mm2/s 4.1
37
Thermal Shock Resistance, points 24
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 2.0
0 to 0.25
Iron (Fe), % 57.3 to 66.8
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0 to 1.5
0 to 0.15
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 5.5 to 8.0
0
Nitrogen (N), % 0.2 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15