MakeItFrom.com
Menu (ESC)

S32520 Stainless Steel vs. Grade 6 Titanium

S32520 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32520 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
11
Fatigue Strength, MPa 460
290
Poisson's Ratio 0.27
0.32
Reduction in Area, % 46
27
Shear Modulus, GPa 80
39
Shear Strength, MPa 560
530
Tensile Strength: Ultimate (UTS), MPa 860
890
Tensile Strength: Yield (Proof), MPa 630
840

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1440
1580
Melting Onset (Solidus), °C 1400
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
7.8
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.0
30
Embodied Energy, MJ/kg 55
480
Embodied Water, L/kg 180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
92
Resilience: Unit (Modulus of Resilience), kJ/m3 960
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31
55
Strength to Weight: Bending, points 26
46
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 24
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 2.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 57.3 to 66.8
0 to 0.5
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 5.5 to 8.0
0
Nitrogen (N), % 0.2 to 0.35
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4