MakeItFrom.com
Menu (ESC)

S32520 Stainless Steel vs. S20432 Stainless Steel

Both S32520 stainless steel and S20432 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32520 stainless steel and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
45
Fatigue Strength, MPa 460
210
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 560
400
Tensile Strength: Ultimate (UTS), MPa 860
580
Tensile Strength: Yield (Proof), MPa 630
230

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 1100
900
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 20
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.0
2.7
Embodied Energy, MJ/kg 55
38
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 41
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
210
Resilience: Unit (Modulus of Resilience), kJ/m3 960
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 24
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
17 to 18
Copper (Cu), % 0.5 to 2.0
2.0 to 3.0
Iron (Fe), % 57.3 to 66.8
66.7 to 74
Manganese (Mn), % 0 to 1.5
3.0 to 5.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 5.5 to 8.0
4.0 to 6.0
Nitrogen (N), % 0.2 to 0.35
0.050 to 0.2
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030