MakeItFrom.com
Menu (ESC)

S32550 Stainless Steel vs. 5005 Aluminum

S32550 stainless steel belongs to the iron alloys classification, while 5005 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32550 stainless steel and the bottom bar is 5005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
28 to 64
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 21
1.1 to 23
Fatigue Strength, MPa 400
38 to 86
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 540
70 to 130
Tensile Strength: Ultimate (UTS), MPa 860
110 to 230
Tensile Strength: Yield (Proof), MPa 620
41 to 210

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
200
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
52
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
170

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.8
8.3
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
2.3 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 940
12 to 320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 31
11 to 23
Strength to Weight: Bending, points 26
19 to 31
Thermal Diffusivity, mm2/s 4.4
82
Thermal Shock Resistance, points 23
4.9 to 10

Alloy Composition

Aluminum (Al), % 0
97 to 99.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24 to 27
0 to 0.1
Copper (Cu), % 1.5 to 2.5
0 to 0.2
Iron (Fe), % 57.2 to 67
0 to 0.7
Magnesium (Mg), % 0
0.5 to 1.1
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 2.9 to 3.9
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15