MakeItFrom.com
Menu (ESC)

S32550 Stainless Steel vs. C86700 Bronze

S32550 stainless steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32550 stainless steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 860
630
Tensile Strength: Yield (Proof), MPa 620
250

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1440
880
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
2.9
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
86
Resilience: Unit (Modulus of Resilience), kJ/m3 940
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31
22
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 4.4
28
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 1.5 to 2.5
55 to 60
Iron (Fe), % 57.2 to 67
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.5
1.0 to 3.5
Molybdenum (Mo), % 2.9 to 3.9
0
Nickel (Ni), % 4.5 to 6.5
0 to 1.0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0