MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. 7021 Aluminum

S32615 stainless steel belongs to the iron alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 28
9.4
Fatigue Strength, MPa 180
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 400
270
Tensile Strength: Ultimate (UTS), MPa 620
460
Tensile Strength: Yield (Proof), MPa 250
390

Thermal Properties

Latent Heat of Fusion, J/g 370
380
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1310
510
Specific Heat Capacity, J/kg-K 500
870
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 170
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
41
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 23
44
Strength to Weight: Bending, points 21
45
Thermal Shock Resistance, points 15
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0 to 0.050
Copper (Cu), % 1.5 to 2.5
0 to 0.25
Iron (Fe), % 46.4 to 57.9
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15