MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. Grade 1 Titanium

S32615 stainless steel belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is grade 1 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
120
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 28
28
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.28
0.32
Reduction in Area, % 46
36
Shear Modulus, GPa 75
39
Shear Strength, MPa 400
200
Tensile Strength: Ultimate (UTS), MPa 620
310
Tensile Strength: Yield (Proof), MPa 250
220

Thermal Properties

Latent Heat of Fusion, J/g 370
420
Maximum Temperature: Mechanical, °C 990
320
Melting Completion (Liquidus), °C 1350
1660
Melting Onset (Solidus), °C 1310
1610
Specific Heat Capacity, J/kg-K 500
540
Thermal Expansion, µm/m-K 15
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
37
Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 4.4
31
Embodied Energy, MJ/kg 63
510
Embodied Water, L/kg 170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
79
Resilience: Unit (Modulus of Resilience), kJ/m3 160
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
23
Thermal Shock Resistance, points 15
24

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 16.5 to 19.5
0
Copper (Cu), % 1.5 to 2.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 46.4 to 57.9
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
99.095 to 100
Residuals, % 0
0 to 0.4