MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. C17500 Copper

S32615 stainless steel belongs to the iron alloys classification, while C17500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 28
6.0 to 30
Fatigue Strength, MPa 180
170 to 310
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Shear Strength, MPa 400
200 to 520
Tensile Strength: Ultimate (UTS), MPa 620
310 to 860
Tensile Strength: Yield (Proof), MPa 250
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 370
220
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1350
1060
Melting Onset (Solidus), °C 1310
1020
Specific Heat Capacity, J/kg-K 500
390
Thermal Expansion, µm/m-K 15
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
60
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 4.4
4.7
Embodied Energy, MJ/kg 63
73
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120 to 2390
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
9.7 to 27
Strength to Weight: Bending, points 21
11 to 23
Thermal Shock Resistance, points 15
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 1.5 to 2.5
95.6 to 97.2
Iron (Fe), % 46.4 to 57.9
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5