MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. C85900 Brass

S32615 stainless steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 28
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 620
460
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 370
170
Maximum Temperature: Mechanical, °C 990
130
Melting Completion (Liquidus), °C 1350
830
Melting Onset (Solidus), °C 1310
790
Specific Heat Capacity, J/kg-K 500
390
Thermal Expansion, µm/m-K 15
20

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 4.4
2.9
Embodied Energy, MJ/kg 63
49
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23
16
Strength to Weight: Bending, points 21
17
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0
Copper (Cu), % 1.5 to 2.5
58 to 62
Iron (Fe), % 46.4 to 57.9
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 4.8 to 6.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7