MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. C84000 Brass

S32654 stainless steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
65
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
42
Tensile Strength: Ultimate (UTS), MPa 850
250
Tensile Strength: Yield (Proof), MPa 490
140

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
940
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 6.4
3.0
Embodied Energy, MJ/kg 87
49
Embodied Water, L/kg 220
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
58
Resilience: Unit (Modulus of Resilience), kJ/m3 570
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
8.2
Strength to Weight: Bending, points 25
10
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 19
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 25
0
Copper (Cu), % 0.3 to 0.6
82 to 89
Iron (Fe), % 38.3 to 45.3
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 2.0 to 4.0
0 to 0.010
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0.5 to 2.0
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.0050
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7