MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. S17400 Stainless Steel

Both S32654 stainless steel and S17400 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
11 to 21
Fatigue Strength, MPa 450
380 to 670
Poisson's Ratio 0.28
0.28
Reduction in Area, % 46
40 to 62
Shear Modulus, GPa 82
75
Shear Strength, MPa 590
570 to 830
Tensile Strength: Ultimate (UTS), MPa 850
910 to 1390
Tensile Strength: Yield (Proof), MPa 490
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1100
850
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 11
17
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
14
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.4
2.7
Embodied Energy, MJ/kg 87
39
Embodied Water, L/kg 220
130

Common Calculations

PREN (Pitting Resistance) 57
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 570
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
32 to 49
Strength to Weight: Bending, points 25
27 to 35
Thermal Diffusivity, mm2/s 2.9
4.5
Thermal Shock Resistance, points 19
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.070
Chromium (Cr), % 24 to 25
15 to 17
Copper (Cu), % 0.3 to 0.6
3.0 to 5.0
Iron (Fe), % 38.3 to 45.3
70.4 to 78.9
Manganese (Mn), % 2.0 to 4.0
0 to 1.0
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030