MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. S40975 Stainless Steel

Both S32654 stainless steel and S40975 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 54% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
170
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
22
Fatigue Strength, MPa 450
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
75
Shear Strength, MPa 590
290
Tensile Strength: Ultimate (UTS), MPa 850
460
Tensile Strength: Yield (Proof), MPa 490
310

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1100
710
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 11
26
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
6.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.4
2.0
Embodied Energy, MJ/kg 87
28
Embodied Water, L/kg 220
95

Common Calculations

PREN (Pitting Resistance) 57
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
93
Resilience: Unit (Modulus of Resilience), kJ/m3 570
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 2.9
7.0
Thermal Shock Resistance, points 19
17

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 24 to 25
10.5 to 11.7
Copper (Cu), % 0.3 to 0.6
0
Iron (Fe), % 38.3 to 45.3
84.4 to 89
Manganese (Mn), % 2.0 to 4.0
0 to 1.0
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0.5 to 1.0
Nitrogen (N), % 0.45 to 0.55
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0
0 to 0.75