MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. S42035 Stainless Steel

Both S32654 stainless steel and S42035 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 60% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
18
Fatigue Strength, MPa 450
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
77
Shear Strength, MPa 590
390
Tensile Strength: Ultimate (UTS), MPa 850
630
Tensile Strength: Yield (Proof), MPa 490
430

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 440
470
Maximum Temperature: Mechanical, °C 1100
810
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 11
27
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.4
2.4
Embodied Energy, MJ/kg 87
34
Embodied Water, L/kg 220
110

Common Calculations

PREN (Pitting Resistance) 57
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
100
Resilience: Unit (Modulus of Resilience), kJ/m3 570
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
22
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 2.9
7.2
Thermal Shock Resistance, points 19
22

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 24 to 25
13.5 to 15.5
Copper (Cu), % 0.3 to 0.6
0
Iron (Fe), % 38.3 to 45.3
78.1 to 85
Manganese (Mn), % 2.0 to 4.0
0 to 1.0
Molybdenum (Mo), % 7.0 to 8.0
0.2 to 1.2
Nickel (Ni), % 21 to 23
1.0 to 2.5
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5