MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. 3005 Aluminum

S32760 stainless steel belongs to the iron alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
33 to 73
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
1.1 to 16
Fatigue Strength, MPa 450
53 to 100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 550
84 to 150
Tensile Strength: Ultimate (UTS), MPa 850
140 to 270
Tensile Strength: Yield (Proof), MPa 620
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1410
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 4.1
8.2
Embodied Energy, MJ/kg 57
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 930
18 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 30
14 to 27
Strength to Weight: Bending, points 25
21 to 33
Thermal Diffusivity, mm2/s 4.0
64
Thermal Shock Resistance, points 23
6.0 to 12

Alloy Composition

Aluminum (Al), % 0
95.7 to 98.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0 to 0.1
Copper (Cu), % 0.5 to 1.0
0 to 0.3
Iron (Fe), % 57.6 to 65.8
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15