MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. ACI-ASTM CF3 Steel

Both S32760 stainless steel and ACI-ASTM CF3 steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is ACI-ASTM CF3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
140
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
60
Fatigue Strength, MPa 450
270
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 850
510
Tensile Strength: Yield (Proof), MPa 620
250

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
960
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
16
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
3.2
Embodied Energy, MJ/kg 57
45
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 42
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
250
Resilience: Unit (Modulus of Resilience), kJ/m3 930
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
18
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 23
11

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
17 to 21
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 57.6 to 65.8
62.9 to 75
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.5
Nickel (Ni), % 6.0 to 8.0
8.0 to 12
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.040
Tungsten (W), % 0.5 to 1.0
0