MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. AISI 304 Stainless Steel

Both S32760 stainless steel and AISI 304 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is AISI 304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170 to 360
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
8.0 to 43
Fatigue Strength, MPa 450
210 to 440
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 550
400 to 690
Tensile Strength: Ultimate (UTS), MPa 850
580 to 1180
Tensile Strength: Yield (Proof), MPa 620
230 to 860

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 22
15
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
3.0
Embodied Energy, MJ/kg 57
43
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 42
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
86 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 930
140 to 1870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
21 to 42
Strength to Weight: Bending, points 25
20 to 32
Thermal Diffusivity, mm2/s 4.0
4.2
Thermal Shock Resistance, points 23
12 to 25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
18 to 20
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 57.6 to 65.8
66.5 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
8.0 to 10.5
Nitrogen (N), % 0.2 to 0.3
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0.5 to 1.0
0