MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. AISI 441 Stainless Steel

Both S32760 stainless steel and AISI 441 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
23
Fatigue Strength, MPa 450
180
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 550
300
Tensile Strength: Ultimate (UTS), MPa 850
470
Tensile Strength: Yield (Proof), MPa 620
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
550
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 22
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.8
Embodied Energy, MJ/kg 57
41
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 42
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
92
Resilience: Unit (Modulus of Resilience), kJ/m3 930
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 4.0
6.1
Thermal Shock Resistance, points 23
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
17.5 to 19.5
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 57.6 to 65.8
76 to 82.2
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5
Tungsten (W), % 0.5 to 1.0
0