MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. EN 1.4516 Stainless Steel

Both S32760 stainless steel and EN 1.4516 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
23
Fatigue Strength, MPa 450
210
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 550
350
Tensile Strength: Ultimate (UTS), MPa 850
550
Tensile Strength: Yield (Proof), MPa 620
320

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
720
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.0
Embodied Energy, MJ/kg 57
28
Embodied Water, L/kg 180
97

Common Calculations

PREN (Pitting Resistance) 42
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 930
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
20
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 4.0
8.1
Thermal Shock Resistance, points 23
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
10.5 to 12.5
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 57.6 to 65.8
83.3 to 89
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0.5 to 1.5
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
0.050 to 0.35
Tungsten (W), % 0.5 to 1.0
0