MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. EN 1.8961 Steel

Both S32760 stainless steel and EN 1.8961 steel are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is EN 1.8961 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
19
Fatigue Strength, MPa 450
150
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 550
270
Tensile Strength: Ultimate (UTS), MPa 850
430
Tensile Strength: Yield (Proof), MPa 620
220

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
45
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.7
Embodied Energy, MJ/kg 57
23
Embodied Water, L/kg 180
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
70
Resilience: Unit (Modulus of Resilience), kJ/m3 930
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 30
15
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 23
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 24 to 26
0.35 to 0.85
Copper (Cu), % 0.5 to 1.0
0.2 to 0.6
Iron (Fe), % 57.6 to 65.8
96.1 to 99.3
Manganese (Mn), % 0 to 1.0
0.15 to 0.7
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Tungsten (W), % 0.5 to 1.0
0
Vanadium (V), % 0
0 to 0.14