MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. S32101 Stainless Steel

Both S32760 stainless steel and S32101 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is S32101 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 450
400
Poisson's Ratio 0.27
0.28
Rockwell C Hardness 24
27
Shear Modulus, GPa 80
78
Shear Strength, MPa 550
490
Tensile Strength: Ultimate (UTS), MPa 850
740
Tensile Strength: Yield (Proof), MPa 620
500

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
430
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.6
Embodied Energy, MJ/kg 57
38
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 42
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
230
Resilience: Unit (Modulus of Resilience), kJ/m3 930
640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
27
Strength to Weight: Bending, points 25
24
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 23
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 24 to 26
21 to 22
Copper (Cu), % 0.5 to 1.0
0.1 to 0.8
Iron (Fe), % 57.6 to 65.8
67.3 to 73.3
Manganese (Mn), % 0 to 1.0
4.0 to 6.0
Molybdenum (Mo), % 3.0 to 4.0
0.1 to 0.8
Nickel (Ni), % 6.0 to 8.0
1.4 to 1.7
Nitrogen (N), % 0.2 to 0.3
0.2 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0.5 to 1.0
0