MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. S44635 Stainless Steel

Both S32760 stainless steel and S44635 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 95% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
240
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
23
Fatigue Strength, MPa 450
390
Poisson's Ratio 0.27
0.27
Rockwell C Hardness 24
24
Shear Modulus, GPa 80
81
Shear Strength, MPa 550
450
Tensile Strength: Ultimate (UTS), MPa 850
710
Tensile Strength: Yield (Proof), MPa 620
580

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
610
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
22
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
4.4
Embodied Energy, MJ/kg 57
62
Embodied Water, L/kg 180
170

Common Calculations

PREN (Pitting Resistance) 42
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
150
Resilience: Unit (Modulus of Resilience), kJ/m3 930
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 4.0
4.4
Thermal Shock Resistance, points 23
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 24 to 26
24.5 to 26
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 57.6 to 65.8
61.5 to 68.5
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
3.5 to 4.5
Nickel (Ni), % 6.0 to 8.0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0.2 to 0.3
0 to 0.035
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0.5 to 1.0
0