MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. S82122 Stainless Steel

Both S32760 stainless steel and S82122 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 450
360
Poisson's Ratio 0.27
0.28
Rockwell C Hardness 24
28
Shear Modulus, GPa 80
78
Shear Strength, MPa 550
460
Tensile Strength: Ultimate (UTS), MPa 850
680
Tensile Strength: Yield (Proof), MPa 620
450

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
430
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.6
Embodied Energy, MJ/kg 57
37
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 42
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
210
Resilience: Unit (Modulus of Resilience), kJ/m3 930
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 23
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
20.5 to 21.5
Copper (Cu), % 0.5 to 1.0
0.5 to 1.5
Iron (Fe), % 57.6 to 65.8
68.9 to 75.4
Manganese (Mn), % 0 to 1.0
2.0 to 4.0
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.6
Nickel (Ni), % 6.0 to 8.0
1.5 to 2.5
Nitrogen (N), % 0.2 to 0.3
0.15 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.020
Tungsten (W), % 0.5 to 1.0
0