MakeItFrom.com
Menu (ESC)

S32803 Stainless Steel vs. AISI 301L Stainless Steel

Both S32803 stainless steel and AISI 301L stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32803 stainless steel and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 18
22 to 50
Fatigue Strength, MPa 350
240 to 530
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 420
440 to 660
Tensile Strength: Ultimate (UTS), MPa 680
620 to 1040
Tensile Strength: Yield (Proof), MPa 560
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 510
410
Maximum Temperature: Mechanical, °C 1100
890
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
39
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 36
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 760
160 to 1580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
22 to 37
Strength to Weight: Bending, points 22
21 to 29
Thermal Diffusivity, mm2/s 4.4
4.1
Thermal Shock Resistance, points 22
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.030
Chromium (Cr), % 28 to 29
16 to 18
Iron (Fe), % 62.9 to 67.1
70.7 to 78
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 3.0 to 4.0
6.0 to 8.0
Niobium (Nb), % 0.15 to 0.5
0
Nitrogen (N), % 0 to 0.020
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.0035
0 to 0.030