MakeItFrom.com
Menu (ESC)

S32803 Stainless Steel vs. AISI 444 Stainless Steel

Both S32803 stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common.

For each property being compared, the top bar is S32803 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 18
23
Fatigue Strength, MPa 350
210
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 86
83
Shear Modulus, GPa 81
78
Shear Strength, MPa 420
300
Tensile Strength: Ultimate (UTS), MPa 680
470
Tensile Strength: Yield (Proof), MPa 560
310

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 510
580
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
23
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 36
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 760
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 4.4
6.2
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.025
Chromium (Cr), % 28 to 29
17.5 to 19.5
Iron (Fe), % 62.9 to 67.1
73.3 to 80.8
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 1.8 to 2.5
1.8 to 2.5
Nickel (Ni), % 3.0 to 4.0
0 to 1.0
Niobium (Nb), % 0.15 to 0.5
0.2 to 0.8
Nitrogen (N), % 0 to 0.020
0 to 0.035
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.0035
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8